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Chapter 2. Electrostatic II 
Notes: 
• Most of the material presented in this chapter is taken from Jackson, Chap. 2, 3, and 

4, and Di Bartolo, Chap. 2. 

2.1 Mathematical Considerations 

2.1.1 The Fourier series and the Fourier transform 

Any periodic signal g x( ) , of period a , can always be expressed with the so-called 
Fourier series, where 
 

 g x( ) = Gne
i
2πnx
a

n=−∞

∞

∑ ,  (2.1) 

 
with Gn  the Fourier coefficient 
 

 Gn =
1
a

g x( )e− i
2πnx
a dx

−a 2

a 2

∫ .  (2.2) 

 
Alternatively, the Fourier series can be expressed using sine and cosine functions instead 
of an exponential function. Equations (2.1) and (2.2) are then replaced by 
 

 

g x( ) = G0 + An cos
2πnx
a

⎛
⎝⎜

⎞
⎠⎟
+ Bn sin

2πnx
a

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥n=1

∞

∑

An =
2
a

g x( )cos 2πnx
a

⎛
⎝⎜

⎞
⎠⎟
dx

−a 2

a 2

∫

Bn =
2
a

g x( )sin 2πnx
a

⎛
⎝⎜

⎞
⎠⎟
dx

−a 2

a 2

∫ .

 (2.3) 

 
Note that G0 = A0 2 , if n = 0  is allowed in the second of equations (2.3). If we set 
 

 g x( ) = δ x − ′x − ma( )
m=−∞

∞

∑ ,           for ′x <
a
2

 (2.4) 

 
then it seen from equations (2.1) and (2.2) that 
 

 δ x − ′x( ) = 1
a

e
i
2πn x− ′x( )

a

n=−∞

∞

∑ ,           for x <
a
2

.  (2.5) 

 
This is the closure relation. 
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If we let a→∞ , we have the following transformations 
 

 

2πn
a

→ k

n=−∞

∞

∑ → dn
−∞

∞

∫ = a
2π

dk
−∞

∞

∫

Gn →
2π
a
G k( ).

 (2.6) 

 
The pair of equations (2.1) and (2.2) defining the Fourier series are replaced by a 
corresponding set  
 

 
g x( ) = G k( )eikx dk

−∞

∞

∫
G k( ) = 1

2π
g x( )e−ikx dx

−∞

∞

∫ .
 (2.7) 

 
These equations are usually rendered symmetric by, respectively, dividing and 
multiplying them by 2π . We then get the Fourier transform pair 
 

 
g x( ) = 1

2π
G k( )eikxdk

−∞

∞

∫

G k( ) = 1
2π

g x( )e− ikxdx
−∞

∞

∫ .
 (2.8) 

 
We can evaluate the closure relation corresponding to the Fourier transform by setting 
g x( ) = δ x − ′x( )  in equations (2.8), we thus obtain 
 

 δ x − ′x( ) = 1
2π

eik x− ′x( )dk
−∞

∞

∫ .  (2.9) 

 
The generalization of both the Fourier series and Fourier transform to functions of higher 
dimensions is straightforward. 

2.1.2 Spherical harmonics 
One possible solution to the Laplace equation is a potential function of polynomials of 
rank l . If we use Cartesian coordinates we can write this potential as 
 
 Φl x( ) = Cn1n2n3

xn1 yn2 zn3
n1 +n2 +n3 = l
∑ . (2.10) 
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We now evaluate the maximum number of terms in the summation. If we start by 
assigning a value m  (one out of the l +1 possible values) to the exponent n1 , we can 
easily determine that there are l +1− m  different combinations with which we can 
arrange the other two indices. If we denote by N l( )  the maximum number of terms 
composing the potential, we have 
 

 N l( ) = l +1− m( )
m=0

l

∑ = l + 2 − m( )
m=1

l+1

∑ . (2.11) 

 
But since this equation can also simply be written as 
 

 N l( ) = m
m=1

l+1

∑ ,  (2.12) 

 
we can transform equation (2.11) as follows 
 

 
N l( ) = l + 2( ) l +1( ) − m

m=1

l+1

∑
= l2 + 3l + 2( ) − N l( ).

 (2.13) 

 
Then, 
 

 N l( ) = 1
2
l2 + 3l + 2( ).  (2.14) 

 
However, these N l( )  terms cannot all be independent since the potential must satisfy the 
Laplace equation, which states that 
 
 ∇2Φl = 0.  (2.15) 
 
Because this last equation has a rank of l − 2 , the number of independent terms is given 
by 
 

 N l( ) − N l − 2( ) = 1
2
l2 + 3l + 2⎡⎣ ⎤⎦ −

1
2

l − 2( )2 + 3 l − 2( ) + 2⎡⎣ ⎤⎦
= 2l +1.

 (2.16) 

 
If we make a change of coordinates from Cartesian to spherical with 
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x = r sin θ( )cos ϕ( )
y = r sin θ( )sin ϕ( )
z = r cos θ( ),

 (2.17) 

 
and further 
 

 
x + iy = r sin θ( )eiϕ
x − iy = r sin θ( )e− iϕ ,

 (2.18) 

 
we can write the potential as  
 

 Φl r,θ ,ϕ( ) = Clmr
lYlm θ ,ϕ( )

m=− l

l

∑ ,  (2.19) 

 
where the functions Ylm θ,ϕ( ) , with −l < m < l , are the spherical harmonics. 

The Laplacian operator in spherical coordinates is given by 
 

 
∇2 =

1
r
∂2

∂r2
r + 1

r2
1

sin θ( )
∂
∂θ

sin θ( ) ∂
∂θ

⎡
⎣⎢

⎤
⎦⎥
+

1
sin2 θ( )

∂2

∂ϕ 2

⎧
⎨
⎩

⎫
⎬
⎭

=
1
r
∂2

∂r2
r + Ω

r2
,

 (2.20) 

 
with  
 

 Ω =
1

sin θ( )
∂
∂θ

sin θ( ) ∂
∂θ

⎡
⎣⎢

⎤
⎦⎥
+

1
sin2 θ( )

∂2

∂ϕ 2 .  (2.21) 

 
Applying the Laplace equation to the term l,m( )  of the potential using the last of 
equations (2.20) yields 
 

 
1
r
∂2

∂r2
r + Ω

r2
⎡

⎣
⎢

⎤

⎦
⎥r

lYlm =
1
r
∂2

∂r2
rl+1Ylm( ) +Ωrl−2Ylm

= l l +1( )rl−2Ylm + rl−2ΩYlm = 0.
 (2.22) 

 
Thus, the differential equation satisfied by the spherical harmonics is 
 
 ΩYlm θ,ϕ( ) + l l +1( )Ylm θ,ϕ( ) = 0.  (2.23) 
 
Equation (2.23) is commonly known as the generalized Legendre differential equation. 
Because the coordinates can be separated from each other in the Laplace equation, we 
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can better establish a more general functional form for the solution to the Laplace 
equation in spherical coordinates. For example, if we act on 
 

 Φ r,θ,ϕ( ) = U r( )
r

P θ( )Q ϕ( ),  (2.24) 

 
with equation (2.20) (while setting the result of the operation equal to zero), multiply by 
r2 sin2 θ( ) , and divide by equation (2.24), we find that ϕ  is separated from r  and θ  and 
consequently 
 

 
1
Q
d 2Q
dϕ 2 = −m2 .  (2.25) 

 
with m  a constant. The solution to equation (2.25) is  
 
 Q ϕ( )∝ eimϕ .  (2.26) 
 
If we insert equations (2.24) and (2.26) into equation (2.20), multiply by r2 , and divide 
by equation (2.24), r  is now separated from θ  and ϕ  with 
 

 
r2

U
d 2U
dr2

= l l +1( ),  (2.27) 

 
with l  a constant, and therefore 
 

 
U r( )
r

= Alr
l +

Bl
rl+1

 (2.28) 

 
in general. Finally, if we insert equations (2.24), (2.26), and (2.28) in equation (2.20), 
multiply by r2 , and divide by equation (2.24), then θ  is separated from r  and ϕ  with  
 

 
1

sin θ( )
d
dθ

sin θ( ) dP
dθ

⎡
⎣⎢

⎤
⎦⎥
+ l l +1( ) − m2

sin2 θ( )
⎡

⎣
⎢

⎤

⎦
⎥P = 0,  (2.29) 

 
and a corresponding solution Plm θ( ) . The general solution to the Laplace equation in 
spherical coordinates is therefore 
 

 Φ r,θ,ϕ( ) = Almr
l +

Blm
rl+1

⎡
⎣⎢

⎤
⎦⎥
Ylm θ,ϕ( )

m=− l

l

∑
l=0

∞

∑ ,  (2.30) 

 
with 
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 Ylm θ,ϕ( )∝ Plm θ( )e− imϕ . (2.31) 
 
The spherical harmonics also satisfy the following relations: 
a) The orthonormality relation 
 
 dϕ Ylm

* θ,ϕ( )Y ′l ′m θ,ϕ( )sin θ( )dθ =
0

π

∫0

2π

∫ δ l ′l δm ′m . (2.32) 

 
b) If we write 
 

 Ylm θ,ϕ( ) = Ylm
r
r

⎛
⎝⎜

⎞
⎠⎟
= Ylm n( ),  (2.33) 

 
where −n  has the orientation π −θ  and π +ϕ , then the following symmetry relation 
applies 

 
 Ylm −n( ) = −1( )l Ylm n( ).  (2.34) 
 
c) If we substitute m→ −m  
 
 Yl ,−m θ,ϕ( ) = −1( )m Ylm* θ,ϕ( ). (2.35) 
 
d) The closure relation 
 

 Ylm
* ′θ , ′ϕ( )Ylm θ,ϕ( )

m=− l

l

∑
l=0

∞

∑ = δ ϕ − ′ϕ( )δ cos θ( ) − cos ′θ( )( ).  (2.36) 

 
Since the spherical harmonics form a complete set of orthonormal functions, any 
arbitrary function can be expanded as a series of spherical harmonics with 
 

 
g θ,ϕ( ) = AlmYlm θ,ϕ( )

m=− l

l

∑
l=0

∞

∑

Alm = dϕ g θ,ϕ( )Ylm* θ,ϕ( )sin θ( )dθ
0

π

∫0

2π

∫ .
 (2.37) 

 
Here are some examples of spherical harmonics 
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Y00 =
1
4π

Y10 =
3
4π
cos θ( )

Y1,±1 = 
3
8π
sin θ( )e± iϕ

Y20 =
5
16π

3cos2 θ( ) −1⎡⎣ ⎤⎦

Y2,±1 = 
15
8π
sin θ( )cos θ( )e± iϕ

Y2,±2 =
15
32π

sin2 θ( )e± i2ϕ .

 (2.38) 

 
The Legendre polynomials are the solution to the generalized Legendre differential 
equation (i.e., equation (2.23)) when m = 0 . They can be defined using the spherical 
harmonics as 
 

 Pl cos θ( )⎡⎣ ⎤⎦ =
4π
2l +1

Yl0 θ( ).  (2.39) 

 
The Legendre polynomials also form a complete set of orthogonal functions with an 
orthogonality relation 
 

 P ′l x( )Pl x( )
−1

1

∫ dx =
2

2l +1
δ ′l l  (2.40) 

 
and a closure relation 
 

 Pl
* ′x( )Pl x( ) = 2

2l +1
δ x − ′x( )

l=0

∞

∑ ,  (2.41) 

 
where x = cos θ( ) . Any arbitrary function of x = cos θ( )  can, therefore, be expanded in a 
series of Legendre Polynomials 
 

 
g x( ) = AlPl x( )

l=0

∞

∑

Al =
2l +1
2

g x( )Pl x( )dx.
−1

1

∫
 (2.42) 

 
The first few Legendre polynomials are 
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P0 x( ) = 1
P1 x( ) = x

P2 x( ) = 1
2
3x2 −1( )

P3 x( ) = 1
2
5x3 − 3x( )

P4 x( ) = 1
8
35x4 − 30x2 + 3( ).

 (2.43) 

 
There exists a useful relation between the Legendre polynomials and the spherical 
harmonics. The so-called addition theorem for spherical harmonics is expressed as 
follows 
 

 Pl cos γ( )⎡⎣ ⎤⎦ =
4π
2l +1

Ylm
* ′θ , ′ϕ( )Ylm θ,ϕ( )

m=− l

l

∑  (2.44) 

 
where γ  is the angle made between two vectors x and ′x  of coordinates r,θ,ϕ( )  and 
′r , ′θ , ′ϕ( ) , respectively. These definitions for x and ′x  also imply that  

 
 cos γ( ) = cos θ( )cos ′θ( ) + sin θ( )sin ′θ( )cos ϕ − ′ϕ( ).  (2.45) 
 
We can prove the addition theorem by noting that since cos γ( )  is a function of θ  and ϕ  

through equation (2.45), then, Pl cos γ( )⎡⎣ ⎤⎦  can be expanded in a series of spherical 
harmonics Ylm θ,ϕ( ) . We therefore write 
 

 Pl cos γ( )⎡⎣ ⎤⎦ = cmYlm θ,ϕ( )
m=− l

l

∑ .  (2.46) 

 
Evidently, since equation (2.45) is symmetric in θ,ϕ( )  and ′θ , ′ϕ( ) , we could just as well 

express Pl cos γ( )⎡⎣ ⎤⎦  with a similar series containing ′θ  and ′ϕ  instead 
 

 Pl cos γ( )⎡⎣ ⎤⎦ = ′c ′m Yl ′m ′θ , ′ϕ( )
′m =− l

l

∑ . (2.47) 

 
Furthermore, because of the particular form of equation (2.45) we can also write 
 

 Pl cos γ( )⎡⎣ ⎤⎦ = αm ′m Yl ′m ′θ , ′ϕ( )Ylm θ,ϕ( )
′m =− l

l

∑
m=− l

l

∑ .  (2.48) 
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[Note: Equation (2.48) is justified because each term in cos γ( )  can be expressed by a 
sum of products of functions of θ  and ϕ  with functions of ′θ  and ′ϕ  through 
 

 
cos γ( ) = sin θ( )cos ϕ( )sin ′θ( )cos ′ϕ( ) + sin θ( )sin ϕ( )sin ′θ( )sin ′ϕ( )

+ cos θ( )cos ′θ( ),
 (2.49) 

 
and therefore the same can be said of Pl cos γ( )⎡⎣ ⎤⎦ , since it contains a sum of terms of the 

type cosn γ( )  (which can similarly be expressed as a sum of products of functions of 
θ  and ϕ  with functions of ′θ  and ′ϕ ). For a given l , an arbitrary function fl θ,ϕ( )  
( fl ′θ , ′ϕ( ) ) can be expanded as a series of spherical harmonics Ylm θ,ϕ( )  (Yl ′m ′θ , ′ϕ( ) ); 
ergo equation (2.48).] 
However, because of equations (2.31) and (2.45) the dependence on ϕ  must be such that  
 
 ei ′m ′ϕ eimϕ = ei ′m ′ϕ +mϕ( ) = eim ϕ− ′ϕ( ). (2.50) 
 
That is, we must have ′m = −m , and 
 

 Pl cos γ( )⎡⎣ ⎤⎦ = αmYl ,−m ′θ , ′ϕ( )Ylm θ,ϕ( )
m=− l

l

∑ .  (2.51) 

 
Substituting equation (2.35) for the first spherical harmonic, we get 
 

 Pl cos γ( )⎡⎣ ⎤⎦ = −1( )mαmYlm
* ′θ , ′ϕ( )Ylm θ,ϕ( )

m=− l

l

∑ .  (2.52) 

 
If we now set γ = 0  so that cos γ( ) = 1,  ′θ = θ,  and ′ϕ = ϕ , we have from equation (2.52) 
 

 Pl 1( ) = 1 = −1( )mαm Ylm θ,ϕ( ) 2
m=− l

l

∑ ,  (2.53) 

 
and integrating both sides over all angles we find, because the normalization of the 
spherical harmonics (see equation (2.32)), 
 

 4π = −1( )mαm
m=− l

l

∑ .  (2.54) 

 
Let us now square equation (2.52) 
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Pl
2 cos γ( )⎡⎣ ⎤⎦ = −1( )mαmYlm

* ′θ , ′ϕ( )Ylm θ,ϕ( )
m=− l

l

∑

× −1( ) ′m α ′m Yl ′m
* ′θ , ′ϕ( )Yl ′m θ,ϕ( )

′m =− l

l

∑

= −1( )mαmYlm
* ′θ , ′ϕ( )Ylm θ,ϕ( )

m=− l

l

∑

× −1( ) ′m α ′m Yl ′m ′θ , ′ϕ( )Yl ′m
* θ,ϕ( )

′m =− l

l

∑ ,

 (2.55) 

 
where we have used equation (2.35) twice in the last term, and made the transformations 
′m → − ′m  and →

′m
∑

− ′m
∑  as well. We integrate over the angles θ  and ϕ  to obtain 

 

 
Pl
2 cos γ( )⎡⎣ ⎤⎦dΩ∫ = −1( )m+ ′m αmα ′m Ylm

* ′θ , ′ϕ( )Yl ′m ′θ , ′ϕ( )
′m =− l

l

∑
m=− l

l

∑
× Yl ′m

* θ,ϕ( )Ylm θ,ϕ( )∫ dΩ,
 (2.56) 

 
which according to equations (2.32) and (2.40) gives 
 

 
4π
2l +1

= αm
2 Ylm ′θ , ′ϕ( ) 2

m=− l

l

∑ .  (2.57) 

 
Integrating over the angles ′θ  and ′ϕ  this time, we get 
 

 4π 4π
2l +1

= αm
2

m=− l

l

∑ .  (2.58) 

 
Combining equations (2.54) and (2.58) we can determine the coefficient αm  to be 
 

 αm =
4π −1( )m
2l +1

,  (2.59) 

 
which upon insertion in equation (2.52) yield equation (2.44), i.e., the addition theorem 
for spherical harmonics. 

Finally, another useful equation is that for the expansion of the potential of point charge, 
in a volume excluding the charge (i.e., x ≠ ′x ), as a function of Legendre polynomials 
 

 
1

x − ′x
=

r<
l

r>
l+1 Pl cos γ( )⎡⎣ ⎤⎦

l=0

∞

∑ ,  (2.60) 
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where r<  and r>  are, respectively, the smaller and larger of x  and ′x , and γ  is the 
angle between x and ′x  (see equation (2.45)). Upon substituting the addition theorem of 
equation (2.44) for the Legendre polynomials in equation (2.60), we find 
 

 
1

x − ′x
= 4π 1

2l +1
r<
l

r>
l+1 Ylm

* ′θ , ′ϕ( )Ylm θ,ϕ( )
m=− l

l

∑
l=0

∞

∑ .  (2.61) 

 

2.2 Solution of Electrostatic Boundary-value Problems 
As we saw earlier, the expression for the potential obtained through Green’s theorem is a 
solution of the Poisson equation 
 

 ∇2Φ = −
ρ
ε0
.  (2.62) 

 
It is always possible to write Φ  as the superposition of two potentials: the particular 
solution Φp , and the characteristic solution Φc  
 
 Φ = Φp +Φc .  (2.63) 
 
 The characteristic potential is actually the solution to the homogeneous Laplace equation 
 
 ∇2Φ = 0  (2.64) 
 
due to the boundary conditions on the surface S  that delimitates the volume V  where the 
potential is evaluated (i.e., Φc  is the result of the surface integral in equation (1.106) 
after the desired type of boundary conditions are determined). Consequently, Φp  is the 
response to the presence of the charges present within V . More precisely, 
 

 Φp x( ) = 1
4πε0

ρ ′x( )
R

d 3 ′x
V∫ .  (2.65) 

 
This suggests that we can always break down a boundary-value problem into two parts. 
To the particular solution that is formally evaluated with equation (2.65), we add the 
characteristic potential, which is often more easily solved using the Laplace equation 
(instead of the aforementioned surface integral). 

2.2.1 Separation of variables in Cartesian coordinates 
The Laplace equation in Cartesian coordinates is given by 
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∂2Φ
∂x2

+
∂2Φ
∂y2

+
∂2Φ
∂z2

= 0,  (2.66) 

 
where we dropped the subscript “c” for the potential as it is understood that we are 
solving for the characteristic potential. A general form for the solution to this equation 
can be attempted by assuming that the potential can be expressed as the product of three 
functions, each one being dependent of one variable only. More precisely, 
 
 Φ x, y, z( ) = X x( )Y y( )Z z( ).  (2.67) 
 
Inserting this relation into equation (2.66), and dividing the result by equation (2.67) we 
get 
 

 1
X x( )

d 2X x( )
dx2

+
1

Y y( )
d 2Y y( )
dy2

+
1

Z z( )
d 2Z z( )
dz2

= 0.  (2.68) 

 
If this equation is to hold for any values of x, y, and z , then each term must be constant. 
We, therefore, write 
 

 

1
X x( )

d 2X x( )
dx2

= −α 2

1
Y y( )

d 2Y y( )
dy2

= −β 2

1
Z z( )

d 2Z z( )
dz2

= γ 2 ,

 (2.69) 

  
with  
 
 α 2 + β 2 = γ 2 .  (2.70) 
 
The solution to equations (2.69), when α 2  and β 2  are both positive, is of the type 
 
 Φ x, y, z( )∝ e± iα xe± iβye± α 2 +β2 z . (2.71) 
 
Example 
Let’s consider a hollow rectangular box of dimension a,b and c  in the x, y,  and z  
directions, respectively, with five of the six sides kept at zero potential (grounded) and 
the top side at a voltage V x, y( ) . The box has one of its corners located at the origin (see 
Figure 2.1). We want to evaluate the potential everywhere inside the box. 
 Since we have Φ = 0  for x = 0 , y = 0 , and z = 0 , it must be that  
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Figure 2.1 – A hollow, rectangular box with five sides at zero potential. The topside has 
the specified voltage Φ = V x, y( ) . 

 

 
X ∝ sin αx( )
Y ∝ sin βy( )
Z ∝ sinh α 2 + β 2 z( ).

 (2.72) 

 
Moreover, since Φ = 0  at x = a , and y = b , we must further have that 
 

 

αn =
nπ
a

βm =
mπ
b

γ nm = π n2

a2
+
m2

b2
,

 (2.73) 

 
where the subscripts n and m  were added to identify the different “modes” allowed to 
exist in the box. To each mode nm  corresponds a potential 
 
 Φnm ∝ sin αnx( )sin βmy( )sinh γ nmz( ).  (2.74) 
 
The total potential will consists of a linear superposition of the potentials belonging to the 
different modes  
 

 Φ x, y, z( ) = Anm sin αnx( )sin βmy( )sinh γ nmz( )
n,m=1

∞

∑ ,  (2.75) 

 
where the still undetermined coefficient Anm  is the amplitude of the potential associated 
with mode nm . Finally, we must also take into account the value of the potential at z = c  
with 
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 V x, y( ) = Anm sin αnx( )sin βmy( )sinh γ nmc( )
n,m=1

∞

∑ .  (2.76) 

 
We see from equation (2.76) that Anm sinh γ nmc( )  is just a (two-dimensional) Fourier 
coefficient, and is given by 
 

 Anm sinh γ nmc( ) = 4
ab

dx dy V x, y( )sin αnx( )sin βmy( )
0

b

∫0

a

∫ .  (2.77) 

 
If, for example, the potential is kept constant at V  over the topside, then the coefficient is 
given by 
 

 Anm sinh γ nmc( ) = V 4
π 2nm

1− −1( )n⎡⎣ ⎤⎦ 1− −1( )m⎡⎣ ⎤⎦.  (2.78) 

 
We see that no even modes are allowed, and that the amplitude of a given mode is 
inversely proportional to its order. 

2.3 Multipole Expansion 
Given a charge distribution ρ ′x( )  contained within a sphere of radius R , we want to 
evaluate the potential Φ x( )  at any point exterior to the sphere. Since the potential is 
evaluated at points where there are no charges, it must satisfy the Laplace equation and, 
therefore, can be expanded as a series of spherical harmonics 
 

 Φ x( ) = 1
4πε0

clm
Ylm θ,ϕ( )
rl+1m=− l

l

∑
l=0

∞

∑ ,  (2.79) 

 
where the coefficients clm  are to be determined. The radial functional form chosen for the 
potential in equation (2.79) is the only physical possibility available from the general 
solution to the Laplace equation (see equation (2.30)), as the potential must be finite 
when r→∞ . In order to evaluate the coefficients clm , we use the well-known volume 
integral for the potential 
 

 Φ x( ) = 1
4πε0

ρ ′x( )
x − ′x

d 3 ′x
V∫ ,  (2.80) 

 
with equation (2.61) for the expansion of the denominator. We, then, find (with 
r< = ′r = ′x  and r> = r = x , since x > ′x ) 
 

 Φ x( ) = 1
ε0

1
2l +1

Ylm
* ′θ , ′ϕ( ) ′r lρ ′x( )d 3 ′x∫⎡⎣ ⎤

⎦
Ylm θ,ϕ( )
rl+1m=− l

l

∑
l=0

∞

∑ .  (2.81) 
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Comparing equations (2.79) and (2.81), we determine the coefficients of the former 
equation to be 
 

 clm =
4π
2l +1

Ylm
* ′θ , ′ϕ( ) ′r lρ ′x( )d 3 ′x∫ .  (2.82) 

 
The multipole moments, denoted by qlm (= clm 2l +1( ) 4π ), are given by 
 

 qlm = Ylm
* ′θ , ′ϕ( ) ′r lρ ′x( )d 3 ′x∫  (2.83) 

   
Using some of equations (2.38), with 
 

 
′r sin ′θ( )e± iϕ = ′x ± i ′y

′r cos ′θ( ) = ′z ,
 (2.84) 

 
we can calculate some of the moments, with for example 
 

 

 

q00 =
1
4π

ρ ′x( )d 3 ′x∫ =
q
4π

q10 =
3
4π

cos θ( ) ′r ρ ′x( )∫ d 3 ′x =
3
4π

′z ρ ′x( )∫ d 3 ′x

=
3
4π

pz

q1,±1 = 
3
8π

sin θ( )e iϕ ′r ρ ′x( )∫ d 3 ′x = 
3
8π

′x  i ′y( )ρ ′x( )∫ d 3 ′x

= 
3
8π

px  ipy( )

 (2.85) 

 
for l ≤ 1 , and the following for l = 2  
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q20 =
5
16π

3cos2 θ( ) −1⎡⎣ ⎤⎦∫ ′r 2ρ ′x( )d 3 ′x =
5
16π

3 ′z 2 − ′r 2⎡⎣ ⎤⎦ρ ′x( )d 3 ′x∫

=
5
16π

Q33

q2,±1 = 
15
8π

sin θ( )cos θ( )e iϕ∫ ′r 2ρ ′x( )d 3 ′x == 
15
8π

′z ′x  i ′y( )ρ ′x( )d 3 ′x∫

= 
1
3
15
8π

Q13  iQ23( )

q2,±2 =
15
32π

sin2 θ( )e i2ϕ ′r 2ρ ′x( )d 3 ′x∫ =
15
32π

′x  i ′y( )2 ρ ′x( )d 3 ′x∫

=
1
3

15
32π

Q11  2iQ12 −Q22( ).

(2.86) 

 
In equations (2.85) and (2.86), q  is the total charge or monopole moment, p  is the 
electric dipole moment 
 
 p = ′x ρ ′x( )d 3 ′x∫ ,  (2.87) 
 
and Qij  is a component of the quadrupole moment tensor (here, no summation is 
implied when i = j ) 
 
 Qij = 3 ′xi ′x j − ′r 2δ ij( )ρ ′x( )d 3 ′x∫ .  (2.88) 
  
Using a Taylor expansion (see equation (1.84)) for 1 x − ′x , we can also express the 
potential in rectangular coordinate (the proof will be found with the solution to the first 
problem list) with 
 

 
 
Φ x( )  1

4πε0

q
r
+
p ⋅x
r3

+
1
2
Qij

xix j
r5

+
⎡
⎣
⎢

⎤
⎦
⎥.  (2.89) 

 
The electric field corresponding to a given multipole is given by 
 
 E = −∇Φlm ,  (2.90) 
 
and from equations (2.79), (2.82), and (2.83) we find 
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Er = −
∂Φ
∂r

=
1
ε0

l +1( )
2l +1( ) qlm

Ylm θ,ϕ( )
rl+2

Eθ = −
1
r
∂Φ
∂θ

= −
1
ε0

1
2l +1( ) qlm

1
rl+2

∂
∂θ
Ylm θ,ϕ( )

Eϕ = −
1

r sin θ( )
∂Φ
∂ϕ

= −
1
ε0

1
2l +1( ) qlm

1
rl+2

im
sin θ( )Ylm θ,ϕ( ).

 (2.91) 

 
For example, for the electric monopole term ( l = 0 ) we find 
 

 Er =
q

4πε0r
2           and          Eθ = Eϕ = 0,  (2.92) 

 
which is equivalent to the field generated by a point charge q , as expected. For the 
electric dipole term ( l = 1), we have 
 

 

Er =
2

3ε0r
3 q1,−1Y1,−1 + q10Y10 + q11Y11⎡⎣ ⎤⎦

=
2

3ε0r
3

3
8π

px + ipy( )sin θ( )e− iϕ + 2pz cos θ( ) + px − ipy( )sin θ( )eiϕ⎡⎣ ⎤⎦

=
2

4πε0r
3 px sin θ( )cos ϕ( ) + py sin θ( )sin ϕ( ) + pz cos θ( )⎡⎣ ⎤⎦

Eθ = −
1

3ε0r
3 q1,−1

∂Y1,−1
∂θ

+ q10
∂Y10
∂θ

+ q11
∂Y11
∂θ

⎡
⎣⎢

⎤
⎦⎥

= −
1

3ε0r
3

3
8π

px + ipy( )cos θ( )e− iϕ − 2pz sin θ( ) + px − ipy( )cos θ( )eiϕ⎡⎣ ⎤⎦

= −
1

4πε0r
3 px cos θ( )cos ϕ( ) + py cos θ( )sin ϕ( ) − pz sin θ( )⎡⎣ ⎤⎦,

 (2.93) 

 
and 
 

 

Eϕ = −
i

3ε0r
3 sin θ( ) −q1,−1Y1,−1 + q11Y11⎡⎣ ⎤⎦

= −
i

3ε0r
3 sin θ( )

3
8π

− px + ipy( )sin θ( )e− iϕ + px − ipy( )sin θ( )eiϕ⎡⎣ ⎤⎦

= −
1

4πε0r
3 − px sin ϕ( ) + py cos ϕ( )⎡⎣ ⎤⎦.

 (2.94) 

 
Because the unit basis vectors of the spherical and Cartesian coordinates are related by 
the following relations 
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er = sin θ( )cos ϕ( )ex + sin θ( )sin ϕ( )ey + cos θ( )ez
eθ = cos θ( )cos ϕ( )ex + cos θ( )sin ϕ( )ey − sin θ( )ez
eϕ = − sin ϕ( )ex + cos ϕ( )ey ,

 (2.95) 

 
then we can write the dipole electric field vector as 
 

 E =
1

4πε0r
3 3prer − p( ).  (2.96) 

 
If the dipole is located at x0  (which we now consider to be the origin of the coordinate 
system), with r = x − x0  and n  the unit vector linking x0  to x  (we could use er  instead 
of n ), we can write the dipole electric field vector as follows 
 

 E x( ) = 3n n ⋅p( ) − p
4πε0 x − x0

3 .  (2.97) 

 
It is important to note that in general the multipole moments qlm  depend on the choice of 
the origin. 
Coming back to the evaluation of the electric field due to the dipole moment term, we 
note that if we calculate the average value of the electric field inside a sphere of radius R  
centered at x0 , we find that 
 
 E x( )d 3x

r<R∫ = Erer + Eθeθ + Eϕeϕ⎡⎣ ⎤⎦r
2 sin θ( )drdθdϕ

r<R∫ ,  (2.98) 

 
for which, according to equations (2.93)-(2.94), each term will contain only terms 
proportional to one of the following integrals 
 
 sin ϕ( )dϕ

0

2π

∫ ,    or   cos ϕ( )dϕ
0

2π

∫ ,    or   sin θ( )cos θ( )dθ
0

π

∫ .  (2.99) 

 
Since all of these integrals vanish, we find that the contribution of the dipole term to the 
volume-averaged electric field also vanishes. That is, 
 
 E x( )d 3x

r<R∫ = 0.  (2.100) 

  
This result may not be surprising, since this would be expected if one considers a simple 
dipole configuration (i.e., two point charges of opposite polarity displaced equally far on 
either side of x0 ) and integrate over the sphere centered on the dipole. Things are 
different, however, if we consider an arbitrary charge distribution ρ ′x( ) . We again 
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consider a sphere of radius R  centered on the origin of the coordinate system, and which 
contains the whole charge distribution. We start by writing 
 

 
E x( )d 3x

r<R∫ = − ∇Φd 3x
r<R∫

= − Φ x( )nR2dΩ
r=R∫ ,

 (2.101) 

   
where equation (1.32) was used, and n = x R  is the outward unit vector normal to the 
surface of the sphere. Replacing the potential Φ  with its integral form, we have 
 

 E x( )d 3x
r<R∫ = −

R2

4πε0
d 3 ′x ρ ′x( ) n

x − ′x
dΩ

r=R∫∫ .  (2.102) 

 
Since the unit vector can be written as a function of the angles with 
 
 n = sin θ( )cos ϕ( )ex + sin θ( )sin ϕ( )ey + cos θ( )ez ,  (2.103) 
 
each component ni  of n  can be expanded in a series of spherical harmonics where l = 1  
 

 ni ∝ cmY1m θ,ϕ( )
m=−1

1

∑ .  (2.104) 

 
Because of this, each angular integral on the right-hand side of equation (2.102) can be 
transformed to  
 

 

ni
x − ′x

dΩ
r=R∫ ∝ cm

Y1m θ,ϕ( )
x − ′x

dΩ
r=R∫

m=−1

1

∑

∝ cm
r<
l

r>
l+1 Pl cos γ( )⎡⎣ ⎤⎦Y1m θ,ϕ( )

l=0

∞

∑ dΩ
r=R∫

m=−1

1

∑

∝ cm
r<
l

r>
l+1 Yl0 θ,ϕ( )Y1m θ,ϕ( ) dΩ

r=R∫
l=0

∞

∑
m=−1

1

∑ ,

 (2.105) 

 
where we used equations (2.60) and (2.39), and  
 
 cos γ( ) = cos θ( )cos ′θ( ) + sin θ( )sin ′θ( )cos ϕ − ′ϕ( ).  (2.106) 
 
Upon using the orthogonality property of spherical harmonics (i.e., equation (2.32)), we 
find that the only term allowed is that where l = 1  in the expansion for 1 x − ′x . 
Equation (2.102) can therefore be written as  
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 E x( )d 3x
r<R∫ = −

R2

4πε0
d 3 ′x ρ ′x( ) r<

r>
2 ncos γ( ) dΩ

r=R∫∫ .  (2.107) 

 
The angular integral can now be calculated as follows 
 

 

ncos γ( ) dΩ
r=R∫ = dϕ sin θ( )cos ϕ( )ex + sin θ( )sin ϕ( )ey + cos θ( )ez⎡⎣ ⎤⎦0

π

∫0

2π

∫
× cos θ( )cos ′θ( ) + sin θ( )sin ′θ( )cos ϕ − ′ϕ( )⎡⎣ ⎤⎦ sin θ( )dθ
= π sin ′θ( ) cos ′ϕ( )ex + sin ′ϕ( )ey⎡⎣ ⎤⎦ sin3 θ( )dθ

0

π

∫
+2π cos ′θ( )ez sin θ( )cos2 θ( )dθ

0

π

∫
=
4π
3
sin ′θ( )cos ′ϕ( )ex + sin ′θ( )sin ′ϕ( )ey + cos ′θ( )ez⎡⎣ ⎤⎦

=
4π
3

′n ,

(2.108) 

 
where the last two of equations (2.108) serve as an explicit definition of the unit vector 
′n = ′x ′r . Equation (2.107) is now simplified to  

 

 E x( )d 3x
r<R∫ = −

R2

3ε0
ρ ′x( ) r<

r>
2 ′n d 3 ′x∫ .  (2.109) 

 
With the original assumption that the charge distribution is entirely contained within the 
sphere, we can write r< = ′r  and r> = R , and equation (2.109) reduces to 
 

 

E x( )d 3x
r<R∫ = −

R2

3ε0
ρ ′x( ) ′r

R2
′n d 3 ′x∫

= −
1
3ε0

′x ρ ′x( )d 3 ′x∫

= −
p
3ε0

,

 (2.110) 

 
from equation (2.87). This result states that the average value of the electric field over a 
volume containing the charge distribution responsible for the field is proportional to the 
dipole moment of the charge distribution with respect to the center of the sphere. It can 
be combined to the previous result expressed in equation (2.97) to yield 
 

 E x( ) = 1
4πε0

3n n ⋅p( ) − p
x − x0

3 −
4π
3
pδ x − x0( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
. (2.111) 
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Equation (2.111) does not change the value of the electric field as calculated with 
equation (2.97) when x ≠ x0 , but it correctly takes into account the required volume 
integral (2.110). 

Interestingly, if we consider a sphere to which the charge distribution is external, we have 
r> = ′r  and r< = R  in equation (2.109), and 
 

 

E x( )d 3x
r<R∫ = −

R3

3ε0
ρ ′x( ) ′n

′r 2 d
3 ′x∫

= −
R3

3ε0
ρ ′x( ) ′x

′r 3 d
3 ′x∫

=
R3

3
ρ ′x( ) x − ′x

x − ′x 3 d
3 ′x∫

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥x=0

=
4πR3

3
E 0( ),

 (2.112) 

 
where we used Coulomb’s Law (i.e., equation (1.47)) for the last step. In other words, the 
average value of the electric field over a sphere containing no charge is the value of the 
field at the centre of the sphere. 

2.4 Electrostatic Potential Energy 
We know from the calculations that led to equation (1.60), on page 11, that the product of 
the potential and the charge can be interpreted as the potential energy of the charge as it 
is brought from infinity (where the potential is assumed to vanish) to its final position. 
More precisely, we define the potential energy Wi  of a charge qi  with 
 
 Wi = qiΦ xi( ).  (2.113) 
 
If the potential is due to an ensemble of n −1  charges qj , then the potential energy of the 
charge qi  becomes 
 

 Wi =
qi
4πε0

qj
xi − x jj=1

n−1

∑ ,  (2.114) 

 
and the total potential energy W  is 
 

 W =
1
4πε0

qiqj
xi − x jj<i

∑
i=1

n

∑ .  (2.115) 

 
Alternatively, we can write a more symmetric equation for the total energy by summing 
over all charges and dividing by two 
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 W =
1
8πε0

qiqj
xi − x jj≠ i

∑
i=1

n

∑ .  (2.116) 

 
Equation (2.116) can easily be generalized to continuous charge distributions with 
 

 W =
1
8πε0

ρ x( )ρ ′x( )
x − ′x

d 3xd 3 ′x∫∫  (2.117) 

 
or, alternatively, if we use equation (1.57) for the potential 
 

 W =
1
2

ρ x( )Φ x( )d 3x∫  (2.118) 

 
Furthermore, we can express the potential energy using the electric field instead of the 
charge distribution and the potential. To so, we replace the potential with the Poisson 
equation in equation (2.118) and proceed as follows 
 

 

W = −
ε0
2

Φ∇2Φd 3x∫
= −

ε0
2

∇ ⋅ Φ∇Φ( ) − ∇Φ( )2⎡⎣ ⎤⎦d
3x∫

= −
ε0
2

Φ∇Φ( ) ⋅nda
S∫ − E 2 d 3x∫⎡

⎣
⎤
⎦,

 (2.119) 

 
where we used equation (1.26) and the divergence theorem for the second and last lines, 
respectively. Because the integration is done over all of space, the surface in integral will 
vanish since 
  

 
lim
R→∞

Φ∇Φ( ) ⋅nda
S∫ ∝ lim

R→∞

1
R
⋅
1
R2

R2dΩ
S∫

∝ lim
R→∞

4π
R

= 0.
 (2.120) 

 
The potential energy then becomes 
 

 W =
ε0
2

E 2 d 3x∫  (2.121) 

 
It follows from this result that the potential energy density is defined as 
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 w =
ε0
2
E 2 .  (2.122) 

 
It is important to note that the energy calculated with equation (2.121) will be greater 
than that evaluated using equation (2.117) as it contains (that is, equation (2.121)) the 
“self-energy” of the charge distribution. 
We are now interested in expressing the potential energy of a charge distribution 
subjected to an external field as consisting of the contributions from the different terms in 
the multipole expansion. In this case, we know from equation (2.113) that  
 
 W = ρ x( )Φ x( ) d 3x∫ .  (2.123) 
 
We start by expanding the potential function with a Taylor series (see equation (1.84)) 
around some predefined origin 
 

 

 

Φ x( ) = Φ 0( ) + x ⋅∇Φ x=0 +
1
2
xix j

∂2Φ
∂xi∂x j x=0

+

= Φ 0( ) − x ⋅E 0( ) − 1
2
xix j

∂Ej

∂xi x=0

+,

 (2.124) 

 
where we used E = −∇Φ , and summations over repeated indices were implied. Since 
∇ ⋅E = 0  for the external field, we can subtract the following relation from the last term 
of equation (2.124) without effectively changing anything 
 

 1
6
r2∇ ⋅E x=0 =

1
6
r2δ ij

∂Ej

∂xi x=0

 (2.125) 

 
to get  
 

 
 
Φ x( ) = Φ 0( ) − x ⋅E 0( ) − 1

6
3xix j − r

2δ ij( ) ∂Ej

∂xi x=0

+  (2.126) 

 
If we insert equation (2.126) into equation (2.118) for the potential energy, and using 
equation (2.88) for the components of the quadrupole moment tensor, we get 
 

 
 

W = qΦ 0( ) − p ⋅E 0( ) − 1
6
Qij

∂Ej

∂xi x=0

+  (2.127) 
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Using equation (2.111) for the electric field generated by a dipole, and equation (2.127), 
we can calculate the energy of interaction between two dipoles p1  and p2  located at 
x1  and x2 , respectively, when x1 ≠ x2 . Thus, 
 

 

W12 = −p1 ⋅E2 x1( ) = −p2 ⋅E1 x2( )

=
p1 ⋅p2 − 3 p1 ⋅n( ) p2 ⋅n( )

4πε0 x1 − x2
3 ,

 (2.128) 

 
where n = x1 − x2( ) x1 − x2 . The dipoles are attracted to each other when the energy is 
negative, and vice-versa. For example, when the dipoles are parallel in their orientation, 
and to the line joining them, then, W < 0  and they will attract each other. 

2.5 Electrostatic fields in Matter 
So far in dealing with the equations of electrostatic, we were concerned with, and 
derived, the microscopic equations of electrostatic. That is, we considered problems 
involving mainly charge distributions without the presence of any ponderable media. 
When analyzing electrostatic fields in matter, we need to make averages over 
macroscopically small, but microscopically large, volumes to obtain the macroscopic 
equations of electrostatics. 
In the first place, if we think of the macroscopic electric field E  at a given point x  as 
some average of the microscopic electric field Eµ  over some surrounding volume ΔV , 
we can write 
 

 E x( ) = 1
ΔV

Eµ x + ′x( )d 3 ′x
ΔV∫ .  (2.129) 

 
If we calculate the curl of the macroscopic field, we have 
 

 
∇ × E x( ) = ∇ ×

1
ΔV

Eµ x + ′x( )d 3 ′x
ΔV∫

⎡
⎣⎢

⎤
⎦⎥

=
1
ΔV

∇ × Eµ x + ′x( )d 3 ′x
ΔV∫ ,

 (2.130) 

 
and since from the microscopic equation  ∇ × Eµ = 0 , then 
 
 ∇ × E = 0  (2.131) 
 
for the macroscopic field. So the same relation between the electric field and the potential 
exists when dealing with ponderable media. That is, 
 
 E x( ) = −∇Φ. (2.132) 
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When a medium made up atoms or molecules is subjected to an external electric field, the 
charges making up the molecules will react to its presence by individually producing a, or 
enhancing an already existing, dipole moment. The material as a whole will, therefore, 
become electrically polarized, the resulting dipole moment being the dominant multipole 
term. That is, an electric polarization P  (dipole moment per unit volume) given by 
 
 P x( ) = Ni x( )pi

i
∑  (2.133) 

 
is induced in the medium, where pi  is the average dipole moment of the ith  type of 
molecules in the medium (calculated in the same manner as the electric field was in 
equation (2.129)), and Ni  is the average number density of the same type of molecules at 
point x . The average charge density ρ x( )  is evaluated using the same process. 

Similarly, we can use equation (2.89) to calculate the contribution to the potential at the 
position x  from the macroscopically small volume element ΔV located at ′x  
 

 ΔΦ x, ′x( ) = 1
4πε0

ρ ′x( )ΔV
x − ′x

+
x − ′x( ) ⋅P ′x( )ΔV

x − ′x 3

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,  (2.134) 

 
where ρ ′x( )ΔV  and P ′x( )ΔV  are, respectively, the average monopole (or charge) and 
dipole moments contained in the volume. Taking the limit ΔV → d 3 ′x , and integrate over 
all space, we get the potential 
 

 Φ x( ) = 1
4πε0

d 3 ′x
ρ ′x( )
x − ′x

+ P ′x( ) ⋅ ′∇
1

x − ′x
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫ ,  (2.135) 

 
where we used equation (1.55). Transforming the second term, we find 
 

 

P ′x( ) ⋅ ′∇
1

x − ′x
⎛
⎝⎜

⎞
⎠⎟
d 3 ′x∫ = ′∇ ⋅

P ′x( )
x − ′x

⎛
⎝⎜

⎞
⎠⎟
−

′∇ ⋅P ′x( )
x − ′x

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
d 3 ′x∫

=
P ′x( )
x − ′x

⋅ ′n d ′a∫ −
′∇ ⋅P ′x( )
x − ′x

d 3 ′x∫

= −
′∇ ⋅P ′x( )
x − ′x

d 3 ′x∫ ,

 (2.136) 

  
since the first integral on the right-hand side is over an infinite surface. The potential now 
becomes 
 

 Φ x( ) = 1
4πε0

d 3 ′x
1

x − ′x
ρ ′x( ) − ′∇ ⋅P ′x( )⎡⎣ ⎤⎦∫ . (2.137) 
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Equation (2.137) has the same form as equation (1.57) for the potential, as long as we 
define a new “effective” charge density ρ − ∇ ⋅P( ) . By effective charge density, we 
mean that if the polarization is non-uniform in a given region (i.e., ∇ ⋅P ≠ 0 ), then there 
will be a net change in the amount of charge within that region. Upon using equation 
(2.132), we can write 
 

 

∇ ⋅E x( ) = −∇2Φ

= −
1
4πε0

∇2 1
x − ′x

⎛
⎝⎜

⎞
⎠⎟

ρ ′x( ) − ′∇ ⋅P ′x( )⎡⎣ ⎤⎦∫ d 3 ′x

=
1
ε0

δ x − ′x( ) ρ ′x( ) − ′∇ ⋅P ′x( )⎡⎣ ⎤⎦∫ d 3 ′x

=
1
ε0

ρ x( ) − ∇ ⋅P x( )⎡⎣ ⎤⎦.

 (2.138) 

 
We now define the electric displacement D  as 
 
 D = ε0E + P  (2.139) 
 
and equation (2.138) becomes  
 
 ∇ ⋅D = ρ  (2.140) 
 
In most media P  is proportional to E  (i.e., the media are linear and isotropic), and we 
write 
 
 P = ε0χeE,  (2.141) 
 
where χe  is the electric susceptibility of the medium. In such cases, D  is also 
proportional to E  and 
 
 D = εE,  (2.142) 
 
with the electric permittivity ε  defined by 
 
 ε = ε0 1+ χe( ).  (2.143) 
 
The quantity ε ε0  is called the dielectric constant. If the medium is also homogeneous, 
then the divergence of the electric field becomes 
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 ∇ ⋅E =
ρ
ε
. (2.144) 

 
Consequently, any electrostatic problem in a linear, isotropic, and homogeneous medium 
is equivalent to one set in vacuum (solved using the microscopic equations) as long as the 
electric field is scale by a factor ε0 ε . Finally, the boundary conditions derived for the 
microscopic electric field (see equations (1.79)) can easily be extended to such medium 
 

 
D2 − D1( ) ⋅n = σ

E2 − E1( ) × n = 0,
 (2.145) 

 
where n  is a unit vector extending from medium 1 to medium 2, and normal to the 
boundary surface, and σ  is the surface charge. 

2.6 Electrostatic Energy in Dielectric Media 

In evaluating the amount of energy contained in a dielectric, we must be cautious to 
carefully include not only the energy needed to assemble the charge distribution (by 
bringing it from infinity), as was done in section 2.4, but also the energy spent in 
polarizing the medium. So, if we consider a change δρ  in the macroscopic charge 
distribution, which extends over all space, then the work done to accommodate this 
change is (see equation (2.113))  
 
 δW = δρ x( )Φ x( )d 3x∫ ,  (2.146) 
 
where Φ  is the potential due to the already existing charge density ρ x( ) . Using equation 
(2.140), we also write the change in charge density as 
 
 δρ = ∇ ⋅ δD( ).  (2.147) 
 
Inserting this result in equation (2.146) we get 
 

 

δW = ∇ ⋅ δD( )⎡⎣ ⎤⎦Φ d 3x∫
= ∇ ⋅ δDΦ( ) − δD( ) ⋅∇Φ⎡⎣ ⎤⎦∫ d 3x

= E ⋅δD d 3x∫ ,

 (2.148) 

 
since the integral of the divergence on the second line vanishes when transformed into a 
surface integral (over all space) using the divergence theorem. Initially, before the 
dielectric medium is assembled and the electric density attains its final value D , we must 
have D = 0 . Therefore, 
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 W = d 3x E ⋅δD
0

D

∫∫ .  (2.149) 

 
If the medium is linear, then D = εE  and  
 
 δ E ⋅D( ) = εδ E ⋅E( ) = 2ε E ⋅δE( ) = 2 E ⋅δD( ),  (2.150) 
 
and the total electrostatic energy in the medium is 
  

 W =
1
2
E ⋅D d 3x∫  (2.151) 

 
Finally, let’s consider a dielectric ε1  immersed in another (with permittivity ε0 ) where a 
fixed electric field E0  exists. We assume that there are no free charge distributions. That 
is  
 
 ∇ ⋅D = ∇ ⋅D0 = 0.  (2.152) 
 
If the first dielectric ε1  were absent, the energy contained within the equivalent volume 
of space V1  it occupies would be 
 

 W0 =
1
2
E0 ⋅D0 d

3x∫ ,  (2.153) 

 whereas it is  
  

 W1 =
1
2
E ⋅D d 3x∫  (2.154) 

 
with it in place. The difference between the two energies is 
 

 
W ≡W1 −W0 =

1
2

E ⋅D − E0 ⋅D0( ) d 3x
V1∫

=
1
2

E ⋅D0 − E0 ⋅D( ) d 3x
V1∫ +

1
2

E + E0( ) ⋅ D − D0( ) d 3x
V1∫ .

 (2.155) 

 
However, since ∇ × E + E0( ) = 0  and, therefore, E + E0 = −∇Φ , and ∇ ⋅ D − D0( ) = 0  
from equation (2.152), the second integral on the right-hand side of equation (2.155) is 
shown to vanish from 
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1
2

E + E0( ) ⋅ D − D0( ) d 3x
V1∫ = −

1
2

∇Φ ⋅ D − D0( ) d 3x
V1∫

= −
1
2

∇ ⋅ D − D0( )Φ⎡⎣ ⎤⎦ − Φ∇ ⋅ D − D0( ){ } d 3x
V1∫

=
1
2

∇ ⋅ D − D0( )Φ⎡⎣ ⎤⎦ d
3x

V1∫
=
1
2

Φ D − D0( ) ⋅n da
S1∫

= 0,

(2.156) 

 
where the integral of the divergence term was transformed into a surface integral over S1 , 
the surface delimiting the volume V1 , which vanishes because D = D0  at the surface (or 
just beyond it). Hence, 
 

 W =
1
2

E ⋅D0 − E0 ⋅D( ) d 3x
V1∫ .  (2.157) 

 
Alternatively, if we use D = ε1E and D0 = ε0E0 , and the region occupied by the object 
belongs to free space (i.e., the permittivity ε0  is that of vacuum), then 
 

 
W = −

1
2

ε1 − ε0( )E ⋅E0 d 3xV1∫ .

= −
1
2

P ⋅E0 d
3x

V1∫ .
 (2.158) 

 
We can, therefore, define the energy density of a dielectric in a fixed electric field E0  as 
 

 w = −
1
2
P ⋅E0 .  (2.159) 

 
If we allow for an increase δE0  in the electric field relative to some coordinate ′xi , then 
equation (2.158) tells us that there will be a corresponding decrease δW  in the potential 
energy. We, therefore, find that the force on the dielectric is 
 

 F = − lim
δE0→0

δW
δ ′xi

> 0,  (2.160) 

 
and that the dielectric will tend to accelerate toward regions of increasing electric field 
intensity provided that ε1 > ε0 . 


